

QS S Assist KINASE_MSA Kit

Description

KINASE MSA Kit is designed for use in pharmacological assays for KINASE based on Off-chip mobility shift assay. This kit includes assay buffer concentrate (10 x), termination buffer concentrate (4 x), human protein kinase, ATP/substrate/metal concentrate (5 x) and a protocol to perform assay.

Components

Materials	Volume	Storage	
10 x Assay Buffer	10 mL	-80°C	
4 x Termination Buffer	15 mL	-80°C	
KINASE *	25 μL	-80°C	
5 x ATP/substrate/metal	1.0 mL	-80°C (light shielding)	

^{*} Concentration of the kinase; 200 µg/mL

Materials provided

Assay Buffer Concentrate

Thaw 10 x Assay Buffer and dilute 5 mL into 45 mL of distilled water (total volume: 50 mL). Hold diluted assay buffer at room temperature, discarded unused portion at end of day due to instability of DTT in this component.

Termination Buffer Concentrate

Thaw 4 x Termination Buffer and dilute 5 mL into 15 mL of distilled water (total volume: 20 mL). Bring termination buffer to room temperature $(25\pm2^{\circ}\text{C})$ prior to use.

ATP/substrate/metal Solution Concentrate

Thaw 5 x ATP/substrate/metal solution and dilute 0.9 mL into 3.6 mL of distilled water (total volume: 4.5 mL). Bring the solution to room temperature and shield from light until use.

Enzyme Solution

Thaw KINASE (200 μ g/mL) and make aliquots, if the kinase is not used at once. Dilute it appropriate-fold with Assay Buffer (please refer to recommended dilution on page 2). Keep the enzyme solution on ice until use.

Avoid further repeated freeze-thaw cycles for aliquots.

Materials required

Sample Preparation

Prepare 100 x concentrate of compound solution in DMSO. Dilute each compound solution 25 x into assay buffer (creates 4% concentrate of sample). Assay buffer containing 4% DMSO (no sample) is used for vehicle control.

Separation Buffer (Purchase Coating-3 Reagent from Caliper LS, cat. no. 760050) 100 mM HEPES pH7.5, 10 mM MgCl2, 0.01% Triton X-100, 10 mM EDTA-2Na, 1% DMSO, 0.1% Coating-3 Reagent.

Example of Reaction

Sample	Compound solution	Vehicle	ATP/Substrate	Enzyme	Assay Buffer
	(µL)	(µL)	(µL)	(µL)	(µL)
Negative Control	_	5	5	_	10
Positive Control	_	5	5	10	_
Test	5	_	5	10	_

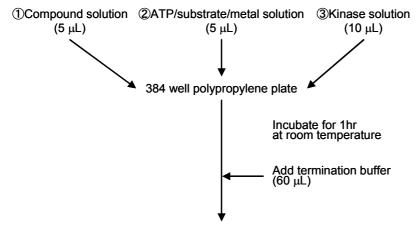
Calculation of inhibition by compound (%)

Inhibition (%)=(1-(Test-Negative Control)/(Positive Control-Negative Control))x100

Final Concentrations of ATP/substrate/metal in reaction mixture at 20 µL/well:

50 μM ATP, 1 μM substrate, and 5 mM MgCl₂

Recommended dilution of **KINASE** with Assay Buffer


1000-fold (final 2000-fold dilution of the kinase in the reaction mixture (20 μ L/well)) (P/(P+S) = 0.3-0.5 under the recommended condition)

Reaction time and temperature

1 hour at room temperature $(25\pm2^{\circ}C)$

Illustration of Assay Procedures:

Electrophoretic separation of substrate and product

ASSAY PROCEDURE:

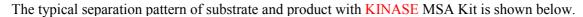
All procedures are performed at room temperature.

- 1. Add 5 μL of vehicle (4% DMSO) to wells of "A" and "B" and compound solution to well of "C",
 - where A equals negative control, B equals positive control and C equals test sample.
- 2. Add 5 µL of ATP/substrate/metal solution to each well.
- 3. Add 10 µL of Assay Buffer to well of "A" and enzyme solution to well of "B" and "C" to start kinase reaction. Cover the plate and incubate for 1 hour.
- 4. Add 60 μL of Termination Buffer to stop kinase reaction.

Place plate(s) into MSA device.

- 5. Measure the Product/Sum ratio.
- 6. Calculate Inhibition % of compound as follows;

Inhibition (%)=
$$(1-(C-A)/(B-A)) \times 100$$


, where A equals negative control, B equals positive control and C equals test sample Product/Sum ratio.

Separation conditions for 12-Sipper chip

Parameter	Setting
Chip	12-Sipper Chip
Analysis Results Type	Off-Chip Mobility Shift
Threshold	None
Baseline Threshold	None
Peak Order	Product First
Downstream (V)	- 600
Upstream (V)	- 1800
Pressure (psi)	-1.1
Initial Delay (sec)	0
End of Plate Delay (sec)	70
Final Delay (sec)	17
Sample sip Time (sec)	0.2
Post Sample Buffer sip Time (sec)	35
Dye sip Time (sec)	0.2
Post Dye sip Time (sec)	45

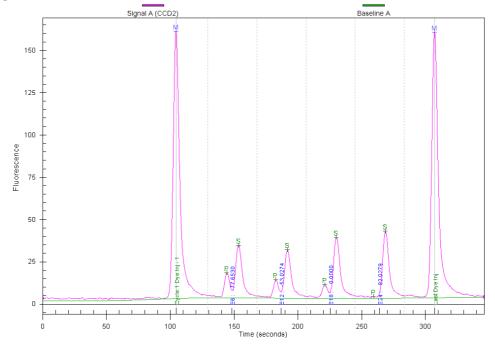


Fig.1 Typical separation pattern under the described separation conditions on page 4.

Notice to Purchaser

Products are sold for research and development purposes only and are not to be incorporated into products for resale without written permission from Carna Biosciences Inc. Please contact info@carnabio.com, with any questions.